Direkt zum Hauptbereich

Der Unterschied zwischen Schrittmotor und Servomotor(2)

Im vorherigen Artikel haben wir über den Unterschied zwischen Schrittmotoren und Schrittmotoren im Motordesign und in der Positionierungsgenauigkeit gesprochen. In diesem Artikel werden wir weiterhin die Unterschiede zwischen Schrittmotoren und Servomotoren unter drei Aspekten untersuchen: Hochgeschwindigkeitsleistung, Feedback im geschlossenen Regelkreis und Effizienz.

Hochgeschwindigkeitsleistung

Servomotoren arbeiten mit höheren Geschwindigkeiten als Schrittmotoren. Dies bedeutet, dass der Servomotor bei einer bestimmten Geschwindigkeit ein größeres Drehmoment abgibt als der Schrittmotor. Leistungsunterschiede im Drehmoment ergeben sich aus Unterschieden in der Anzahl der Pole bei Servomotoren und Schrittmotoren sowie aus Unterschieden in der Wicklungsinduktivität (magnetischer Fluss) zwischen Servomotor- und Schrittmotorkonstruktionen.

Die Anzahl der Pole beeinflusst auch, wie oft die Motorwicklungen für eine Umdrehung weiterlaufen müssen. Für einen Servomotor sind 12 „Schritte“ erforderlich, um einen Vollkreis zu drehen; für einen 2-Phasen-Schrittmotor sind 200 „Schritte“ erforderlich. Beim Fahren mit niedrigen Geschwindigkeiten gibt es keinen signifikanten Unterschied, aber beim Fahren mit hohen Geschwindigkeiten kann der Fahrer die Wicklungen nicht ausreichend mit Strom versorgen und der Strom ist proportional zum Drehmoment, sodass das Drehmoment bei hohen Geschwindigkeiten abnimmt.

Die hohe Polzahl des Schrittmotors erzeugt ein hohes Drehmoment während des Anlaufs, sorgt für einen reibungslosen Betrieb bei niedrigen Drehzahlen, ermöglicht ein schnelles Ansprechverhalten, eine genaue Positionierung ohne die Notwendigkeit eines Encoders und erzeugt leicht Haltemoment. Aufgrund der hohen Induktivität, der hohen Anzahl von Polen und der hohen L/R-Konstante der Wicklung nimmt das Drehmoment jedoch während des Hochgeschwindigkeitsbetriebs ab.

Die geringe Polanzahl und die geringe Wickelinduktivität des Servomotors können beim Starten kein hohes Drehmoment erzeugen, aber es kann das Drehmoment innerhalb des zulässigen Betriebsdrehzahlbereichs besser aufrechterhalten.

Feedback im geschlossenen Regelkreis

Servomotoren müssen im geschlossenen Regelkreis betrieben werden, während Schrittmotoren typischerweise im offenen Regelkreis betrieben werden.

Der Servomotor verwendet Feedback, um Position, Geschwindigkeit und Drehmoment des Motors zu steuern. Der Schrittmotor bewegt sich in die angegebene Position, indem er Anweisungen ohne Rückmeldung erhält, kann aber den "Schritt" durch Überlastung verlieren.

Durch das Hinzufügen von Rückmeldungen zur Aufrechterhaltung der Synchronisierung wird das Antriebsdesign komplexer und gleichzeitig die Anzahl der Komponenten erhöht. Ein typisches Schrittmotorsystem enthält einen Impulsgenerator, einen Phasensequenzer und einen FET; das Servomotorsystem enthält außerdem einen Rotorpositionszähler, einen F/V-Wandler, einen Stromverstärker, einen Geschwindigkeitsverstärker, einen Positionsverstärker und einen Abweichungszähler. Diese Komponenten werden im PID benötigt Schleife Während des Betriebs berechnet der Treiber in der PID-Schleife kontinuierlich den Fehler und passt die Proportional-/Integral-/Differentialverstärkung an, um eine Echtzeitkorrektur durchzuführen, weshalb Servomotoren teurer sind und mehr Verarbeitungszeit benötigen.

Durch die Erhöhung der Rückkopplung im geschlossenen Regelkreis erhöht sich auch das Last-Rotor-Trägheitsverhältnis des Motors. Ein Schrittmotor kann das Zehnfache seiner eigenen Rotorträgheit bewältigen; ein Servomotor kann das 100-fache seiner eigenen Rotorträgheit bewältigen; und ein Schrittmotor mit geschlossenem Regelkreis kann das 30-fache seiner eigenen Rotorträgheit bewältigen.

Schrittmotoren arbeiten ohne Rückmeldung, erfordern für den Betrieb weniger Komponenten und sind daher kostengünstiger. Servomotoren benötigen eine Rückmeldung, um in einer PID-Schleife zu arbeiten, was mehr Komponenten für den Betrieb erfordert und daher mehr kostet.

Effizienz

Der Schrittmotor nutzt die Strom-Chopper-Antriebstechnologie, die unabhängig von der Last einen konstanten Strom liefern kann. Der Strom ist proportional zur Temperatur, daher muss die Einschaltdauer des Schrittmotors auf etwa 50 % begrenzt werden. Ein Servomotor bietet eine effizientere Stromregelung, da er nur den erforderlichen Strom zieht. Schrittmotoren benötigen weniger Strom, um bei Drehzahl Null ein Haltedrehmoment zu erzeugen. Der Servomotor benötigt mehr Leistung, um bei Drehzahl Null ein Haltemoment zu erzeugen.

Die Stromregelungseffizienz der Rückkopplung mit geschlossenem Regelkreis kann verbessert werden, dies wirkt sich jedoch auf die Motortemperatur und die Lebensdauer aus. In der folgenden Abbildung tragen wir den Temperaturanstieg im Verhältnis zum Betriebszyklus des Motors [%] auf. Beachten Sie, wie die Temperatur mit der Betriebslast steigt. Aus diesem Grund müssen Schrittmotoren eine begrenzte Einschaltdauer haben. Die Lebensdauer eines Motors hängt von der Lebensdauer des Lagerfetts ab, die wiederum von der Temperatur abhängt.

Zusammenhang zwischen Temperaturanstieg und Motoreinschaltdauer [%]

Eine effiziente Stromsteuerung kann auch zu anderen Leistungsvorteilen führen, beispielsweise zu weniger Lärm und Vibrationen. Außerdem muss die Motorgröße richtig gewählt werden. Wenn ein Schrittmotor nicht richtig dimensioniert ist, neigt er dazu, mehr Vibrationen zu erzeugen; ist ein Servomotor nicht richtig dimensioniert oder eingestellt, neigt er dazu, mehr „Schwingungen“ zu erzeugen.

Zusammenfassung

Schrittmotoren kosten weniger und Servomotoren haben eine bessere Leistung. Bei der Produktauswahl geht es um ein ständiges Gleichgewicht zwischen Kosten und Leistung. Wenn Sie über das nötige Budget verfügen, kann ein Servomotorsystem eine Komplettlösung sein. Auch wenn es für manche Anwendungen zu viel ist, kann es mit einigen Anpassungen eine optimale Leistung bieten. Bei Punkt-zu-Punkt-Anwendungen können Schrittmotorsysteme das Design vereinfachen und sind eine wirksame Möglichkeit, Kosten zu senken.

Source:https://www.oyostepper.de/article-1122-Der-Unterschied-zwischen-Schrittmotor-und-Servomotor-2-.html

Kommentare

Beliebte Posts aus diesem Blog

Anwendung von Closed-Loop-Schrittmotoren in der CNC-Industrie

Closed-Loop-Schrittmotoren (auch als „Closed-Loop-Steuerung für Schrittmotoren“ bekannt) finden zunehmend Anwendung in der CNC-Industrie, um die Leistung und Genauigkeit von Maschinen zu verbessern. Traditionell wurden Schrittmotoren in CNC-Maschinen ohne Feedback-System verwendet, was sie anfällig für Schrittverlust und ungenaue Positionierung machte. Durch die Integration eines Closed-Loop-Systems wird diese Problematik jedoch effektiv gelöst. Funktionsweise von Closed-Loop-Schrittmotoren Ein  Closed-Loop-Schrittmotor  ist eine Kombination aus einem Schrittmotor und einem Feedback-System, wie einem Encoder. Im Gegensatz zu Open-Loop-Systemen, bei denen der Motor aufgrund eines festen Befehls (z. B. Drehwinkel oder Schrittzahl) betrieben wird, überwacht das Closed-Loop-System kontinuierlich die Position und Geschwindigkeit des Motors. Wenn der Motor einen Fehler (z. B. Schrittverlust oder Überlastung) erkennt, passt das System automatisch die Steuerung an, um die gewünschte P...

Vorteile von Closed Loop Schrittmotor

  In der industriellen Automatisierung werden Schrittmotoren häufig eingesetzt, beispielsweise in Industrierobotern, 3D-Druckern, Computerfestplatten usw. Der herkömmliche Schrittmotor kann die Winkelposition des Rotors steuern, ohne dass ein Sensor zur Steuerung der Position erforderlich ist. Es handelt sich um ein Steuerungssystem mit offenem Regelkreis. Bei dieser Steuerungsmethode hängt die Eingabe des Schrittmotor-Steuerimpulses nicht von der Position ab Stattdessen sendet er seine Steuerimpulse nach einer festen Regel aus, und der Schrittmotor ist nur auf diese Reihe festgelegter Impulse angewiesen, um zu arbeiten. Die meisten schrittmotorbasierten Bewegungssysteme arbeiten in einem offenen Regelkreis und bieten somit eine kostengünstige Lösung. Tatsächlich ist das Schrittmotorsystem die einzige Bewegungstechnologie, die über Positionskontrollfunktionen ohne Rückkopplung verfügt. Wenn der Schrittmotor die Last jedoch im offenen Regelkreis antreibt, besteht die Möglichkeit...

Vorteile von linearen Schrittmotoren

Der lineare Schrittmotor ist ein elektrisches Übertragungsgerät, das elektrische Energie direkt in mechanische Energie mit linearer Bewegung umwandelt. Es kann eine große Anzahl zwischengeschalteter Übertragungsmechanismen eliminieren, die Systemreaktion beschleunigen und die Systemgenauigkeit verbessern, weshalb es weit verbreitet ist. 23LS22-3004E-150G Grundprinzipien des linearen Schrittmotors Verwenden einer Schraube und einer Mutter zum Ineinandergreifen und Verwenden einer Methode, um zu verhindern, dass sich Schraube und Mutter relativ zueinander drehen, wodurch eine axiale Bewegung der Schraube verursacht wird. Im Allgemeinen gibt es zwei Möglichkeiten, diese Konvertierung zu erreichen. Die erste besteht darin, einen Rotor mit Innengewinde im Inneren des Motors zu installieren, der mit der Schraube kämmt, um eine lineare Bewegung zu erreichen. Die zweite besteht darin, die Schraube als Motorausgangswelle zu verwenden und Mutter und Schraube von außen anzutreiben, um ei...